Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.588
Filtrar
1.
Sci Rep ; 14(1): 8348, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594373

RESUMO

Single molecule fluorescence in situ hybridisation (smFISH) has become a valuable tool to investigate the mRNA expression of single cells. However, it requires a considerable amount of programming expertise to use currently available open-source analytical software packages to extract and analyse quantitative data about transcript expression. Here, we present FISHtoFigure, a new software tool developed specifically for the analysis of mRNA abundance and co-expression in QuPath-quantified, multi-labelled smFISH data. FISHtoFigure facilitates the automated spatial analysis of transcripts of interest, allowing users to analyse populations of cells positive for specific combinations of mRNA targets without the need for computational image analysis expertise. As a proof of concept and to demonstrate the capabilities of this new research tool, we have validated FISHtoFigure in multiple biological systems. We used FISHtoFigure to identify an upregulation in the expression of Cd4 by T-cells in the spleens of mice infected with influenza A virus, before analysing more complex data showing crosstalk between microglia and regulatory B-cells in the brains of mice infected with Trypanosoma brucei brucei. These analyses demonstrate the ease of analysing cell expression profiles using FISHtoFigure and the value of this new tool in the field of smFISH data analysis.


Assuntos
Processamento de Imagem Assistida por Computador , Software , Animais , Camundongos , RNA Mensageiro/metabolismo , Hibridização in Situ Fluorescente/métodos , Regulação para Cima
2.
Cell ; 187(8): 2010-2028.e30, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38569542

RESUMO

Gut inflammation involves contributions from immune and non-immune cells, whose interactions are shaped by the spatial organization of the healthy gut and its remodeling during inflammation. The crosstalk between fibroblasts and immune cells is an important axis in this process, but our understanding has been challenged by incomplete cell-type definition and biogeography. To address this challenge, we used multiplexed error-robust fluorescence in situ hybridization (MERFISH) to profile the expression of 940 genes in 1.35 million cells imaged across the onset and recovery from a mouse colitis model. We identified diverse cell populations, charted their spatial organization, and revealed their polarization or recruitment in inflammation. We found a staged progression of inflammation-associated tissue neighborhoods defined, in part, by multiple inflammation-associated fibroblasts, with unique expression profiles, spatial localization, cell-cell interactions, and healthy fibroblast origins. Similar signatures in ulcerative colitis suggest conserved human processes. Broadly, we provide a framework for understanding inflammation-induced remodeling in the gut and other tissues.


Assuntos
Colite Ulcerativa , Colite , Animais , Humanos , Camundongos , Colite/metabolismo , Colite/patologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Hibridização in Situ Fluorescente/métodos , Inflamação/metabolismo , Inflamação/patologia , Comunicação Celular , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/patologia
3.
Methods Mol Biol ; 2784: 271-284, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502492

RESUMO

Genomic instability is an important biomarker in the progression of cervical carcinoma. DBD-FISH (DNA breakage detection-fluorescence in situ hybridization) is a sensitive method that detects strand breaks, alkali-labile sites, and incomplete DNA excision repair in cells of the cervical epithelium. This technique integrates the microgel immersion of cells from a vaginal lesion scraping and the DNA unwinding treatment with the capacity of FISH integrated into digital image analysis. Cells captured within an agarose matrix are lysed and submerged in an alkaline unwinding solution that generates single-stranded DNA motifs at the ends of internal DNA strand breaks. After neutralization, the microgel is dehydrated and the cells are incubated with DNA-labeled probes. The quantity of a hybridized probe at a target sequence corresponds to the measure of the single-stranded DNA produced during the unwinding step, which is equivalent to the degree of local DNA breakage. DNA damage does not show uniformly throughout the entire DNA of a cell; rather, it is confined to specific chromosomal sites. In this chapter, an overview of the technique is supplied, focusing on its ability for assessing the association between DNA damage in specific sequences and in the progressive stages of cervical carcinoma.


Assuntos
Carcinoma , Microgéis , Neoplasias do Colo do Útero , Feminino , Humanos , DNA , Dano ao DNA , Sondas de DNA/genética , DNA de Cadeia Simples , Hibridização in Situ Fluorescente/métodos , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
4.
Int J Mol Sci ; 25(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38542157

RESUMO

We present novel workflows for Q-FISH nanoscopy with the potential for prognostic applications and resolving novel chromatin compaction changes. DNA-fluorescence in situ hybridization (DNA-FISH) is a routine application to visualize telomeres, repetitive terminal DNA sequences, in cells and tissues. Telomere attrition is associated with inherited and acquired diseases, including cancer and cardiomyopathies, and is frequently analyzed by quantitative (Q)-FISH microscopy. Recently, nanoscopic imaging techniques have resolved individual telomere dimensions and their compaction as a prognostic marker, in part leading to conflicting conclusions still unresolved to date. Here, we developed a comprehensive Q-FISH nanoscopy workflow to assess telomeres with PNA telomere probes and 3D-Stimulated Emission Depletion (STED) microscopy combined with Dynamic Intensity Minimum (DyMIN) scanning. We achieved single-telomere resolution at high, unprecedented telomere coverage. Importantly, our approach revealed a decrease in telomere signal density during mitotic cell division compared to interphase. Innovatively expanding FISH-STED applications, we conducted double FISH targeting of both telomere- and chromosome-specific sub-telomeric regions and accomplished FISH-STED in human cardiac biopsies. In summary, this work further advanced Q-FISH nanoscopy, detected a new aspect of telomere compaction related to the cell cycle, and laid the groundwork for future applications in complex cell types such as post-mitotic neurons and muscle cells.


Assuntos
DNA , Telômero , Humanos , Hibridização in Situ Fluorescente/métodos , Telômero/genética , Ciclo Celular/genética , Divisão Celular
5.
ACS Nano ; 18(14): 9958-9968, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38547522

RESUMO

Single-molecule fluorescence in situ hybridization (smFISH) represents a promising approach for the quantitative analysis of nucleic acid biomarkers in clinical tissue samples. However, low signal intensity and high background noise are complications that arise from diagnostic pathology when performed with smFISH-based RNA imaging in formalin-fixed paraffin-embedded (FFPE) tissue specimens. Moreover, the associated complex procedures can produce uncertain results and poor image quality. Herein, by combining the high specificity of split DNA probes with the high signal readout of ZnCdSe/ZnS quantum dot (QD) labeling, we introduce QD split-FISH, a high-brightness smFISH technology, to quantify the expression of mRNA in both cell lines and clinical FFPE tissue samples of breast cancer and lung squamous carcinoma. Owing to its high signal-to-noise ratio, QD split-FISH is a fast, inexpensive, and sensitive method for quantifying mRNA expression in FFPE tumor tissues, making it suitable for biomarker imaging and diagnostic pathology.


Assuntos
Neoplasias da Mama , Pontos Quânticos , Humanos , Feminino , RNA/análise , Inclusão em Parafina , Hibridização in Situ Fluorescente/métodos , RNA Mensageiro/genética , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Formaldeído
6.
Int J Gynecol Pathol ; 43(3): 275-283, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38436360

RESUMO

Mucinous ovarian carcinoma is an uncommon malignancy characterized by resistance to chemotherapy and poor survival in the metastatic setting. HER2 amplification is a frequent late event in carcinogenesis, yet the incidence of HER2-low in mucinous ovarian carcinoma is unknown. Further, the optimal method for determining overexpression in these tumors is not established. We sought to assess the ASCO/CAP and ToGA trial scoring methods for HER2 IHC with correlation to FISH, p53, and mismatch repair protein status and to determine the incidence of HER2-low in mucinous ovarian carcinoma. A total of 29 tumors from 23 patients were included. Immunohistochemistry for HER2, p53, MLH1, PMS2, MSH2, and MSH6 was performed. Scoring was performed according to the ASCO/CAP and ToGA trial criteria. HER2 FISH was performed and scored according to the ASCO/CAP criteria. The proportion of HER2-low, defined as 1+ or 2+ staining with negative FISH, was determined. Using ASCO/CAP, 26% demonstrated 3+ while 35% demonstrated 2+ staining. Using ToGA, 30% demonstrated 3+ while 57% demonstrated 2+ staining. By FISH, 26% were positive for HER2 amplification. Both systems captured all FISH-positive cases; the use of ASCO/CAP resulted in fewer equivocal and false-positive cases. Among HER2-negative cases, 88% were HER2-low. Aberrant p53 expression was detected in 55% of cases; mismatch repair deficiency was not identified in any cases. ASCO/CAP guidelines are accurate and resource-effective in determining HER2 overexpression in mucinous ovarian carcinoma. HER2-low is common in these tumors; further studies to determine the role of HER2-targeted therapy including antibody-drug conjugates are indicated.


Assuntos
Neoplasias Ovarianas , Receptor ErbB-2 , Humanos , Feminino , Receptor ErbB-2/metabolismo , Hibridização in Situ Fluorescente/métodos , Proteína Supressora de Tumor p53 , Carcinoma Epitelial do Ovário , Biomarcadores Tumorais/análise
7.
JCO Precis Oncol ; 8: e2300487, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38547418

RESUMO

PURPOSE: Trastuzumab deruxtecan is a new treatment option for patients with advanced human epidermal growth factor receptor 2 (HER2)-low breast cancer (BC). Although HER2-low status has been characterized in early and advanced BC, it has yet to be fully characterized in brain metastases (BrM). METHODS: Patients who underwent surgery for BC BrM at Sunnybrook Health Sciences Centre and for whom HER2 status was available on resected BrM were studied. Estrogen receptor, progesterone receptor, and HER2 status were assessed on the basis of ASCO/College of American Pathologists (CAP) guidelines. HER2-zero was defined as immunohistochemistry (IHC) 0; HER2-low was defined as IHC 1+ or IHC 2+ with fluorescence in situ hybridization (FISH)-negative status. HER2-positive (HER2+) was defined as IHC 3+ or IHC 2+ with positive FISH. Clinicopathologic features were recorded. We also assessed the prognostic association between extent of HER2 expression and (1) brain-specific progression-free survival (bsPFS), as well as (2) overall survival (OS). RESULTS: In this retrospective cohort of 102 patients with resected BC BrM, 53% (n = 54) were HER2+, 29.4% (n = 30) were HER2-low, and 17.6% (n = 18) had HER2-zero status. Among BrM that were triple-negative on the basis of ASCO/CAP guidelines, 63.6% (n = 14/22) were reclassified as being HER2-low. Sixty percent (n = 15/25) of BrM that were hormone receptor-positive/HER2-negative (HR+/HER2-) were reclassified as being HER2-low. In total, 51 patients had matched primary breast and BrM tissue available; results of HER2 status when categorized as HER2-zero, HER2-low, and HER2+ were concordant in 82.3% (n = 42/51) of cases (Cohen's kappa, 0.58; P = .07). There was no significant association between HER2-zero, HER2-low, and HER2+ status in BrM and either bsPFS or OS. CONCLUSION: Among patients with surgically resected BrM, a high proportion of those with metastatic triple-negative BC and HR+/HER2- disease have HER2-low BrM with potential to benefit from HER2-targeted therapy.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Terapia de Alvo Molecular , Receptor ErbB-2 , Feminino , Humanos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/secundário , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Hibridização in Situ Fluorescente/métodos , Estudos Retrospectivos
8.
Nat Commun ; 15(1): 2342, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491027

RESUMO

High-dimensional, spatially resolved analysis of intact tissue samples promises to transform biomedical research and diagnostics, but existing spatial omics technologies are costly and labor-intensive. We present Fluorescence In Situ Hybridization of Cellular HeterogeneIty and gene expression Programs (FISHnCHIPs) for highly sensitive in situ profiling of cell types and gene expression programs. FISHnCHIPs achieves this by simultaneously imaging ~2-35 co-expressed genes (clustered into modules) that are spatially co-localized in tissues, resulting in similar spatial information as single-gene Fluorescence In Situ Hybridization (FISH), but with ~2-20-fold higher sensitivity. Using FISHnCHIPs, we image up to 53 modules from the mouse kidney and mouse brain, and demonstrate high-speed, large field-of-view profiling of a whole tissue section. FISHnCHIPs also reveals spatially restricted localizations of cancer-associated fibroblasts in a human colorectal cancer biopsy. Overall, FISHnCHIPs enables fast, robust, and scalable cell typing of tissues with normal physiology or undergoing pathogenesis.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Animais , Camundongos , Humanos , Hibridização in Situ Fluorescente/métodos , Perfilação da Expressão Gênica/métodos , Transcriptoma/genética
9.
Phys Rev E ; 109(2-1): 024408, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491617

RESUMO

Recent advances in experimental fluorescence microscopy allow high accuracy determination (resolution of 50 nm) of the three-dimensional physical location of multiple (up to ∼10^{2}) tagged regions of the chromosome. We investigate publicly available microscopy data for two loci of the human Chr21 obtained from multiplexed fluorescence in situ hybridization (FISH) methods for different cell lines and treatments. Inspired by polymer physics models, our analysis centers around distance distributions between different tags with the aim being to unravel the chromatin conformational arrangements. We show that for any specific genomic site, there are (at least) two different conformational arrangements of chromatin, implying coexisting distinct topologies which we refer to as phase α and phase ß. These two phases show different scaling behaviors: the former is consistent with a crumpled globule, while the latter indicates a confined, but more extended conformation, such as a looped domain. The identification of these distinct phases sheds light on the coexistence of multiple chromatin topologies and provides insights into the effects of cellular context and/or treatments on chromatin structure.


Assuntos
Cromatina , Cromossomos , Humanos , Hibridização in Situ Fluorescente/métodos , Genoma , Microscopia de Fluorescência/métodos
10.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38490742

RESUMO

Our understanding of the role of secondary metabolites in microbial communities is challenged by intrinsic limitations of culturing bacteria under laboratory conditions and hence cultivation independent approaches are needed. Here, we present a protocol termed Secondary Metabolite FISH (SecMet-FISH), combining advantages of gene-targeted fluorescence in situ hybridization (geneFISH) with in-solution methods (in-solution FISH) to detect and quantify cells based on their genetic capacity to produce secondary metabolites. The approach capitalizes on the conserved nature of biosynthetic gene clusters (BGCs) encoding adenylation (AD) and ketosynthase (KS) domains, and thus selectively targets the genetic basis of non-ribosomal peptide and polyketide biosynthesis. The concept relies on the generation of amplicon pools using degenerate primers broadly targeting AD and KS domains followed by fluorescent labeling, detection, and quantification. Initially, we obtained AD and KS amplicons from Pseuodoalteromonas rubra, which allowed us to successfully label and visualize BGCs within P. rubra cells, demonstrating the feasibility of SecMet-FISH. Next, we adapted the protocol and optimized it for hybridization in both Gram-negative and Gram-positive bacterial cell suspensions, enabling high-throughput single cell analysis by flow cytometry. Ultimately, we used SecMet-FISH to successfully distinguish secondary metabolite producers from non-producers in a five-member synthetic community.


Assuntos
Família Multigênica , Hibridização in Situ Fluorescente/métodos , Citometria de Fluxo
11.
Methods Mol Biol ; 2784: 45-58, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502477

RESUMO

The inherent stochastic processes governing gene expression give rise to heterogeneity across individual cells, highlighting the importance of single-cell studies. The emergence of single-molecule fluorescent in situ hybridization (smFISH) enabled gene expression analysis at the single-cell level while including the spatial dimension through the visualization and quantification of mRNAs in intact fixed cells. By combining smFISH with immunofluorescence (IF), a comprehensive approach takes shape facilitating the study of mRNAs and proteins to correlate gene expression profiles to different cellular states. This chapter serves as a comprehensive guide to a smFISH-IF protocol optimized for gene expression analysis in the budding yeast S. cerevisiae. We utilize smFISH to visualize the mRNA localization pattern of the CLB2 cyclin over the course of the cell cycle inferred by alpha-tubulin IF.


Assuntos
RNA , Saccharomycetales , Saccharomyces cerevisiae/genética , Hibridização in Situ Fluorescente/métodos , Saccharomycetales/genética , RNA Mensageiro/genética , RNA Mensageiro/análise , Imunofluorescência
12.
Methods Mol Biol ; 2784: 87-100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502480

RESUMO

Single-molecule fluorescence in situ hybridization (smFISH) is a powerful method for the visualization and quantification of individual RNA molecules within intact cells. With its ability to probe gene expression at the single cell and single-molecule level, the technique offers valuable insights into cellular processes and cell-to-cell heterogeneity. Although widely used in the animal field, its use in plants has been limited. Here, we present an experimental smFISH workflow that allows researchers to overcome hybridization and imaging challenges in plants, including sample preparation, probe hybridization, and signal detection. Overall, this protocol holds great promise for unraveling the intricacies of gene expression regulation and RNA dynamics at the single-molecule level in whole plants.


Assuntos
RNA , Animais , Hibridização in Situ Fluorescente/métodos , RNA/genética
13.
Methods Mol Biol ; 2784: 3-23, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502475

RESUMO

In this chapter, we describe in detail how to perform a successful smFISH experiment and how to quantify mRNA transcripts in bacterial cells. The flexibility of the method allows for straightforward adaptation to different bacterial species and experimental conditions. Thanks to the feasibility of the approach, the method can easily be adapted by other laboratories. Finally, we believe that this method has a great potential to generate insights into the complicated life of bacteria.


Assuntos
Bactérias , RNA , Hibridização in Situ Fluorescente/métodos , RNA Mensageiro/genética , Bactérias/genética
14.
Methods Mol Biol ; 2784: 77-85, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502479

RESUMO

In situ hybridization allows the detection of nucleic acid sequences in fixed cells and tissues. The gelatinous nature of cnidarians and Hydractinia demands extensive and exhausting protocols to detect RNA transcripts with traditional methods (e.g., colorimetric in situ hybridization). Signal amplification by exchange reaction (SABER) fluorescence in situ hybridization (FISH) enables simplifying and multiplex imaging of RNA targets in a rapid and cost-effective manner. In one enzymatic reaction, SABER-FISH uses a strand-displacing polymerase and catalytic DNA hairpin to generate FISH probes with adjustable signal amplification, allowing highly sensitive detection of nucleic acids and reducing the number of required probes. Here I describe the methodology to detect transcripts within the cells of Hydractinia by SABER-FISH in whole-mount samples.


Assuntos
Hidrozoários , Ácidos Nucleicos , RNA , Hibridização in Situ Fluorescente/métodos
15.
Methods Mol Biol ; 2784: 163-176, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502485

RESUMO

RNA fluorescence in situ hybridization (FISH) is a powerful method to determine the abundance and localization of mRNA molecules in cells. While modern RNA FISH techniques allow quantification at single molecule resolution, most methods are optimized for mammalian cell culture and are not easily applied to in vivo tissue settings. Single-molecule RNA detection in skeletal muscle cells has been particularly challenging due to the thickness and high autofluorescence of adult muscle tissue and a lack of in vitro models for mature muscle cells (myofibers). Here, we present a method for isolation of adult myofibers from mouse skeletal muscle and detection of single mRNA molecules and proteins using multiplexed RNA FISH and immunofluorescence.


Assuntos
Fibras Musculares Esqueléticas , RNA , Camundongos , Animais , RNA/genética , RNA/metabolismo , Hibridização in Situ Fluorescente/métodos , Fibras Musculares Esqueléticas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Imunofluorescência , Músculo Esquelético , Mamíferos
16.
Methods Mol Biol ; 2784: 101-111, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502481

RESUMO

Plant small RNAs are 21-24 nucleotide, noncoding RNAs that function as regulators in plant growth and development. Colorimetric detection of plant small RNAs was made possible with the introduction of locked nucleic acid probes. However, fluorescent detection of plant small RNAs has been challenging due to the high autofluorescence from plant tissue. Here we report a fluorescent in situ detection method for plant small RNAs. This method can be applied to most plant samples and tissue types and also can be adapted for single-molecule detection of small RNAs with super-resolution microscopy.


Assuntos
Sondas de Ácido Nucleico , RNA não Traduzido , Hibridização in Situ Fluorescente/métodos , RNA de Plantas/genética , Corantes , Plantas/genética
17.
Methods Mol Biol ; 2784: 177-189, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502486

RESUMO

Fluorescent in situ hybridization (FISH) enables the visualization of the position and abundance of nucleic acid molecules in fixed cell and tissue samples. Many FISH-based methods employ sets of synthetic, computationally designed DNA oligonucleotide (oligo) FISH probes, including massively multiplexed imaging spatial transcriptomics and spatial genomics technologies. Oligo probes can either be designed de novo or accessed from an existing database of pre-discovered probe sequences. This chapter describes the use of PaintSHOP, a user-friendly, web-based platform for the design of sets of oligo-based FISH probes. PaintSHOP hosts large collections of pre-discovered probes from many model organisms and also provides collections of functional sequences such as primers and readout domains and interactive tools to add these functional sequences to selected probes. Detailed examples are provided for three common experimental scenarios.


Assuntos
Genômica , Hibridização in Situ Fluorescente/métodos , Sondas de Oligonucleotídeos/genética , Primers do DNA
18.
Methods Mol Biol ; 2784: 133-146, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502483

RESUMO

RNA-fluorescence in situ hybridization (RNA-FISH) is an essential and widely used tool for visualizing RNA molecules in intact cells. Recent advances have increased RNA-FISH sensitivity, signal detection efficiency, and throughput. However, detection of endogenous mRNA splice variants has been challenging due to the limits of visualization of RNA-FISH fluorescence signals and due to the limited number of RNA-FISH probes per target. HiFENS (high-throughput FISH detection of endogenous pre-mRNA splicing isoforms) is a method that enables visualization and relative quantification of mRNA splice variants at single-cell resolution in an automated high-throughput manner. HiFENS incorporates HCR (hybridization chain reaction) signal amplification strategies to enhance the fluorescence signal generated by low abundance transcripts or a small number of FISH probes targeting short stretches of RNA, such as single exons. The technique offers a significant advance in high-throughput FISH-based RNA detection and provides a powerful tool that can be used as a readout in functional genomics screens to discover and dissect cellular pathways regulating gene expression and alternative pre-mRNA splicing events.


Assuntos
Precursores de RNA , RNA , RNA/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Hibridização in Situ Fluorescente/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Hibridização de Ácido Nucleico , Processamento Alternativo
19.
Methods Mol Biol ; 2784: 147-161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502484

RESUMO

N6-methyladenosine (m6A) is an abundant mRNA modification which plays important roles in regulating RNA function and gene expression. Traditional methods for visualizing mRNAs within cells cannot distinguish m6A-modified and unmodified versions of the target transcript, thus limiting our understanding of how and where methylated transcripts are localized within cells. Here, we describe DART-FISH, a visualization technique which enables simultaneous detection of both m6A-modified and unmodified target transcripts. DART-FISH combines m6A-dependent C-to-U editing with mutation-selective fluorescence in situ hybridization to specifically detect methylated and unmethylated transcript copies, enabling the investigation of m6A stoichiometry and methylated mRNA localization in single cells.


Assuntos
RNA , Hibridização in Situ Fluorescente/métodos , RNA/genética , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Methods Mol Biol ; 2784: 215-225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502489

RESUMO

DNA fluorescence in situ hybridization (FISH) enables the visualization of chromatin architecture and the interactions between genomic loci at a single-cell level, complementary to genome-wide methods such as Hi-C. DNA FISH uses fluorescent-labeled DNA probes targeted to the loci of interest, allowing for the analysis of their spatial positioning and proximity with microscopy. Here, we describe an optimized experimental procedure for DNA FISH, from probe design and sample preparation through imaging and image quantification. This protocol can be readily applied to querying the spatial positioning of genomic loci of interest.


Assuntos
Cromatina , DNA , Hibridização in Situ Fluorescente/métodos , DNA/genética , Cromatina/genética , Cromossomos , Sondas de DNA/genética , Corantes Fluorescentes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...